/* ---------------------------------------------------------------------- This is the ██╗ ██╗ ██████╗ ██████╗ ██████╗ ██╗ ██╗████████╗███████╗ ██║ ██║██╔════╝ ██╔════╝ ██╔════╝ ██║ ██║╚══██╔══╝██╔════╝ ██║ ██║██║ ███╗██║ ███╗██║ ███╗███████║ ██║ ███████╗ ██║ ██║██║ ██║██║ ██║██║ ██║██╔══██║ ██║ ╚════██║ ███████╗██║╚██████╔╝╚██████╔╝╚██████╔╝██║ ██║ ██║ ███████║ ╚══════╝╚═╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚═╝ ╚═╝ ╚═╝ ╚══════╝® DEM simulation engine, released by DCS Computing Gmbh, Linz, Austria http://www.dcs-computing.com, office@dcs-computing.com LIGGGHTS® is part of CFDEM®project: http://www.liggghts.com | http://www.cfdem.com Core developer and main author: Christoph Kloss, christoph.kloss@dcs-computing.com LIGGGHTS® is open-source, distributed under the terms of the GNU Public License, version 2 or later. It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. You should have received a copy of the GNU General Public License along with LIGGGHTS®. If not, see http://www.gnu.org/licenses . See also top-level README and LICENSE files. LIGGGHTS® and CFDEM® are registered trade marks of DCS Computing GmbH, the producer of the LIGGGHTS® software and the CFDEM®coupling software See http://www.cfdem.com/terms-trademark-policy for details. ------------------------------------------------------------------------- Contributing author and copyright for this file: Andreas Aigner (DCS Computing GmbH, Linz) Christoph Kloss (DCS Computing GmbH, Linz) Alexander Podlodhnyuk (DCS Computing GmbH, Linz) Andreas Aigner (JKU Linz) Christoph Kloss (JKU Linz) Richard Berger (JKU Linz) Copyright 2012- DCS Computing GmbH, Linz Copyright 2009-2012 JKU Linz ------------------------------------------------------------------------- */ #ifdef ROLLING_MODEL ROLLING_MODEL(ROLLING_EPSD,epsd,2) #else #ifndef ROLLING_MODEL_EPSD_H_ #define ROLLING_MODEL_EPSD_H_ #include "contact_models.h" #include "rolling_model_base.h" #include #include #include "domain.h" #include "math_extra_liggghts.h" namespace LIGGGHTS { namespace ContactModels { using namespace LAMMPS_NS; template<> class RollingModel : public RollingModelBase { public: RollingModel(class LAMMPS * lmp, IContactHistorySetup * hsetup,class ContactModelBase * c) : RollingModelBase(lmp, hsetup, c), coeffRollFrict(NULL), coeffRollVisc(NULL) { history_offset = hsetup->add_history_value("r_torquex_old", "1"); hsetup->add_history_value("r_torquey_old", "1"); hsetup->add_history_value("r_torquez_old", "1"); } void registerSettings(Settings& settings) { settings.registerOnOff("torsionTorque", torsion_torque, false); } void postSettings(IContactHistorySetup * hsetup, ContactModelBase *cmb) {} void connectToProperties(PropertyRegistry & registry) { registry.registerProperty("coeffRollFrict", &MODEL_PARAMS::createCoeffRollFrict); registry.registerProperty("coeffRollVisc", &MODEL_PARAMS::createCoeffRollVisc); registry.connect("coeffRollFrict", coeffRollFrict,"rolling_model epsd"); registry.connect("coeffRollVisc", coeffRollVisc,"rolling_model epsd"); // error checks on coarsegraining if(force->cg_active()) error->cg(FLERR,"rolling model epsd"); } void surfacesIntersect(SurfacesIntersectData & sidata, ForceData & i_forces, ForceData & j_forces) { double r_torque[3]; vectorZeroize3D(r_torque); if(sidata.contact_flags) *sidata.contact_flags |= CONTACT_ROLLING_MODEL; const double radi = sidata.radi; const double radj = sidata.radj; double reff=sidata.is_wall ? radi : (radi*radj/(radi+radj)); #ifdef SUPERQUADRIC_ACTIVE_FLAG if(sidata.is_non_spherical && atom->superquadric_flag) { reff = sidata.reff; } #endif if(sidata.is_wall) { const double wr1 = sidata.wr1; const double wr2 = sidata.wr2; const double wr3 = sidata.wr3; double r_inertia = 0.0; //pre-initialize to prevent compiler "warning" #ifdef SUPERQUADRIC_ACTIVE_FLAG if(sidata.is_non_spherical) { const double rii = pointDistance(sidata.contact_point, atom->x[sidata.i]); const double omega_mag = sqrt(wr1*wr1 + wr2*wr2 + wr3*wr3); if(omega_mag != 0.0) { double er[3]; er[0] = wr1 / omega_mag; er[1] = wr2 / omega_mag; er[2] = wr3 / omega_mag; const double Ix = atom->inertia[sidata.i][0]; const double Iy = atom->inertia[sidata.i][1]; const double Iz = atom->inertia[sidata.i][2]; double inertia_tensor[9]; double inertia_tensor_local[9] = { Ix, 0.0, 0.0, 0.0, Iy, 0.0, 0.0, 0.0, Iz }; MathExtraLiggghtsNonspherical::tensor_quat_rotate(inertia_tensor_local, atom->quaternion[sidata.i], inertia_tensor); double temp[3]; MathExtraLiggghtsNonspherical::matvec(inertia_tensor, er, temp); double Ii = MathExtra::dot3(temp, er); r_inertia = Ii + sidata.mi*rii*rii; } } else { if (domain->dimension == 2) r_inertia = 1.5*sidata.mi*reff*reff; else r_inertia = 1.4*sidata.mi*reff*reff; } #else if (domain->dimension == 2) r_inertia = 1.5*sidata.mi*reff*reff; else r_inertia = 1.4*sidata.mi*reff*reff; #endif calcRollTorque(r_torque,sidata,reff,wr1,wr2,wr3,r_inertia); } else { double wr_roll[3]; const int i = sidata.i; const int j = sidata.j; const double * const * const omega = atom->omega; // relative rotational velocity vectorSubtract3D(omega[i],omega[j],wr_roll); double r_inertia = 0.0; //pre-initialize to prevent compiler "warning" double r_inertia_red_i, r_inertia_red_j; #ifdef SUPERQUADRIC_ACTIVE_FLAG if(sidata.is_non_spherical) { const double rii = pointDistance(sidata.contact_point, atom->x[i]); const double rjj = pointDistance(sidata.contact_point, atom->x[j]); const double omega_mag = vectorMag3D(wr_roll); if(omega_mag != 0.0) { double er[3]; er[0] = wr_roll[0] / omega_mag; er[1] = wr_roll[1] / omega_mag; er[2] = wr_roll[2] / omega_mag; const double Ix_i = atom->inertia[i][0]; const double Iy_i = atom->inertia[i][1]; const double Iz_i = atom->inertia[i][2]; const double Ix_j = atom->inertia[j][0]; const double Iy_j = atom->inertia[j][1]; const double Iz_j = atom->inertia[j][2]; double inertia_tensor_i[9]; double inertia_tensor_local_i[9] = { Ix_i, 0.0, 0.0, 0.0, Iy_i, 0.0, 0.0, 0.0, Iz_i }; double inertia_tensor_j[9]; double inertia_tensor_local_j[9] = { Ix_j, 0.0, 0.0, 0.0, Iy_j, 0.0, 0.0, 0.0, Iz_j }; MathExtraLiggghtsNonspherical::tensor_quat_rotate(inertia_tensor_local_i, atom->quaternion[i], inertia_tensor_i); MathExtraLiggghtsNonspherical::tensor_quat_rotate(inertia_tensor_local_j, atom->quaternion[j], inertia_tensor_j); double temp[3]; MathExtraLiggghtsNonspherical::matvec(inertia_tensor_i, er, temp); double Ii = MathExtra::dot3(temp, er); MathExtraLiggghtsNonspherical::matvec(inertia_tensor_j, er, temp); double Ij = MathExtra::dot3(temp, er); r_inertia_red_i = Ii + sidata.mi*rii*rii; // r_inertia_red_j = Ij + sidata.mj*rjj*rjj; r_inertia = r_inertia_red_i*r_inertia_red_j / (r_inertia_red_i + r_inertia_red_j); } } else { r_inertia_red_i = sidata.mi*radi*radi; r_inertia_red_j= sidata.mj*radj*radj; if (domain->dimension == 2) r_inertia = 1.5 * r_inertia_red_i * r_inertia_red_j/(r_inertia_red_i + r_inertia_red_j); else r_inertia = 1.4 * r_inertia_red_i * r_inertia_red_j/(r_inertia_red_i + r_inertia_red_j); } #else r_inertia_red_i = sidata.mi*radi*radi; r_inertia_red_j= sidata.mj*radj*radj; if (domain->dimension == 2) r_inertia = 1.5 * r_inertia_red_i * r_inertia_red_j/(r_inertia_red_i + r_inertia_red_j); else r_inertia = 1.4 * r_inertia_red_i * r_inertia_red_j/(r_inertia_red_i + r_inertia_red_j); #endif calcRollTorque(r_torque,sidata,reff,wr_roll[0],wr_roll[1],wr_roll[2],r_inertia); } i_forces.delta_torque[0] -= r_torque[0]; i_forces.delta_torque[1] -= r_torque[1]; i_forces.delta_torque[2] -= r_torque[2]; j_forces.delta_torque[0] += r_torque[0]; j_forces.delta_torque[1] += r_torque[1]; j_forces.delta_torque[2] += r_torque[2]; } void surfacesClose(SurfacesCloseData & scdata, ForceData&, ForceData&) { if(scdata.contact_flags) *scdata.contact_flags &= ~CONTACT_ROLLING_MODEL; double * const c_history = &scdata.contact_history[history_offset]; c_history[0] = 0.0; // this is the r_torque_old c_history[1] = 0.0; // this is the r_torque_old c_history[2] = 0.0; // this is the r_torque_old } void beginPass(SurfacesIntersectData&, ForceData&, ForceData&){} void endPass(SurfacesIntersectData&, ForceData&, ForceData&){} private: double ** coeffRollFrict; double ** coeffRollVisc; int history_offset; bool torsion_torque; inline void calcRollTorque(double (&r_torque)[3],const SurfacesIntersectData & sidata,double reff,double wr1,double wr2,double wr3,double r_inertia) { double wr_tot[3],dr_torque[3]; const int itype = sidata.itype; const int jtype = sidata.jtype; const double enx = sidata.en[0]; const double eny = sidata.en[1]; const double enz = sidata.en[2]; const double dt = update->dt; double * const c_history = &sidata.contact_history[history_offset]; // requires Style::TANGENTIAL == TANGENTIAL_HISTORY const double rmu= coeffRollFrict[itype][jtype]; if(torsion_torque) { // use full relative rotation for rolling torque wr_tot[0] = wr1; wr_tot[1] = wr2; wr_tot[2] = wr3; } else { // remove normal (torsion) part of relative rotation // use only tangential parts for rolling torque double wr_n[3]; const double wr_dot_delta = wr1*enx+ wr2*eny + wr3*enz; wr_n[0] = enx * wr_dot_delta; wr_n[1] = eny * wr_dot_delta; wr_n[2] = enz * wr_dot_delta; wr_tot[0] = wr1 - wr_n[0]; // wr_t[0]; wr_tot[1] = wr2 - wr_n[1]; // wr_t[1]; wr_tot[2] = wr3 - wr_n[2]; // wr_t[2]; } // spring const double kr = 2.25*sidata.kn*rmu*rmu*reff*reff; vectorScalarMult3D(wr_tot,dt*kr,dr_torque); r_torque[0] = c_history[0] + dr_torque[0]; r_torque[1] = c_history[1] + dr_torque[1]; r_torque[2] = c_history[2] + dr_torque[2]; // limit max. torque const double r_torque_mag = vectorMag3D(r_torque); const double r_torque_max = fabs(sidata.Fn)*reff*rmu; const bool update_history = sidata.computeflag && sidata.shearupdate; if(r_torque_mag > r_torque_max) { //printf("[%d] %e > %e\n", update->ntimestep, r_torque_mag, r_torque_max); const double factor = r_torque_max / r_torque_mag; r_torque[0] *= factor; r_torque[1] *= factor; r_torque[2] *= factor; if (update_history) { // save rolling torque due to spring c_history[0] = r_torque[0]; c_history[1] = r_torque[1]; c_history[2] = r_torque[2]; } // no damping / no dashpot in case of full mobilisation rolling angle } else { if (update_history) { // save rolling torque due to spring before adding damping torque c_history[0] = r_torque[0]; c_history[1] = r_torque[1]; c_history[2] = r_torque[2]; } // dashpot const double r_coef = coeffRollVisc[itype][jtype] * 2 * sqrt(r_inertia*kr); // add damping torque r_torque[0] += r_coef*wr_tot[0]; r_torque[1] += r_coef*wr_tot[1]; r_torque[2] += r_coef*wr_tot[2]; } } }; } } #endif // ROLLING_MODEL_EPSD_H_ #endif