/* ---------------------------------------------------------------------- This is the ██╗ ██╗ ██████╗ ██████╗ ██████╗ ██╗ ██╗████████╗███████╗ ██║ ██║██╔════╝ ██╔════╝ ██╔════╝ ██║ ██║╚══██╔══╝██╔════╝ ██║ ██║██║ ███╗██║ ███╗██║ ███╗███████║ ██║ ███████╗ ██║ ██║██║ ██║██║ ██║██║ ██║██╔══██║ ██║ ╚════██║ ███████╗██║╚██████╔╝╚██████╔╝╚██████╔╝██║ ██║ ██║ ███████║ ╚══════╝╚═╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚═╝ ╚═╝ ╚═╝ ╚══════╝® DEM simulation engine, released by DCS Computing Gmbh, Linz, Austria http://www.dcs-computing.com, office@dcs-computing.com LIGGGHTS® is part of CFDEM®project: http://www.liggghts.com | http://www.cfdem.com Core developer and main author: Christoph Kloss, christoph.kloss@dcs-computing.com LIGGGHTS® is open-source, distributed under the terms of the GNU Public License, version 2 or later. It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. You should have received a copy of the GNU General Public License along with LIGGGHTS®. If not, see http://www.gnu.org/licenses . See also top-level README and LICENSE files. LIGGGHTS® and CFDEM® are registered trade marks of DCS Computing GmbH, the producer of the LIGGGHTS® software and the CFDEM®coupling software See http://www.cfdem.com/terms-trademark-policy for details. ------------------------------------------------------------------------- Contributing author and copyright for this file: Christoph Kloss (DCS Computing GmbH, Linz) Christoph Kloss (JKU Linz) Richard Berger (JKU Linz) Copyright 2012- DCS Computing GmbH, Linz Copyright 2009-2012 JKU Linz ------------------------------------------------------------------------- */ #ifdef COHESION_MODEL COHESION_MODEL(COHESION_SJKR,sjkr,1) #else #ifndef COHESION_MODEL_SJKR_H_ #define COHESION_MODEL_SJKR_H_ #include "contact_models.h" #include "cohesion_model_base.h" #include namespace LIGGGHTS { namespace ContactModels { using namespace std; using namespace LAMMPS_NS; template<> class CohesionModel : public CohesionModelBase { public: CohesionModel(LAMMPS * lmp, IContactHistorySetup * hsetup, class ContactModelBase * c) : CohesionModelBase(lmp, hsetup, c), cohEnergyDens(NULL) { } void registerSettings(Settings& settings) { settings.registerOnOff("tangential_reduce",tangentialReduce_,false); } void postSettings(IContactHistorySetup * hsetup, ContactModelBase *cmb) {} void connectToProperties(PropertyRegistry & registry) { registry.registerProperty("cohEnergyDens", &MODEL_PARAMS::createCohesionEnergyDensity); registry.connect("cohEnergyDens", cohEnergyDens,"cohesion_model sjkr"); } void surfacesIntersect(SurfacesIntersectData & sidata, ForceData & i_forces, ForceData & j_forces) { //r is the distance between the sphere's centers const double r = sidata.r; const double ri = sidata.radi; const double rj = sidata.radj; double Acont; if(sidata.is_wall) Acont = (ri*ri-r*r)*M_PI*sidata.area_ratio; //contact area sphere-wall else Acont = - M_PI/4 * ( (r-ri-rj)*(r+ri-rj)*(r-ri+rj)*(r+ri+rj) )/(r*r); //contact area of the two spheres const double Fn_coh = -cohEnergyDens[sidata.itype][sidata.jtype]*Acont; if(tangentialReduce_) sidata.Fn += Fn_coh; if(sidata.contact_flags) *sidata.contact_flags |= CONTACT_COHESION_MODEL; #ifdef NONSPHERICAL_ACTIVE_FLAG double torque_i[3] = {0., 0., 0.}; double Fn_i[3] = { Fn_coh * sidata.en[0], Fn_coh * sidata.en[1], Fn_coh * sidata.en[2]}; if (sidata.is_non_spherical) { double xci[3]; vectorSubtract3D(sidata.contact_point, atom->x[sidata.i], xci); vectorCross3D(xci, Fn_i, torque_i); } #endif // apply normal force if(sidata.is_wall) { const double Fn_ = Fn_coh * sidata.area_ratio; i_forces.delta_F[0] += Fn_ * sidata.en[0]; i_forces.delta_F[1] += Fn_ * sidata.en[1]; i_forces.delta_F[2] += Fn_ * sidata.en[2]; #ifdef NONSPHERICAL_ACTIVE_FLAG if(sidata.is_non_spherical) { //for non-spherical particles normal force can produce torque! i_forces.delta_torque[0] += sidata.area_ratio*torque_i[0]; i_forces.delta_torque[1] += sidata.area_ratio*torque_i[1]; i_forces.delta_torque[2] += sidata.area_ratio*torque_i[2]; } #endif } else { const double fx = Fn_coh * sidata.en[0]; const double fy = Fn_coh * sidata.en[1]; const double fz = Fn_coh * sidata.en[2]; i_forces.delta_F[0] += fx; i_forces.delta_F[1] += fy; i_forces.delta_F[2] += fz; j_forces.delta_F[0] -= fx; j_forces.delta_F[1] -= fy; j_forces.delta_F[2] -= fz; #ifdef NONSPHERICAL_ACTIVE_FLAG if(sidata.is_non_spherical) { //for non-spherical particles normal force can produce torque! double xcj[3], torque_j[3]; vectorSubtract3D(sidata.contact_point, atom->x[sidata.j], xcj); vectorCross3D(Fn_i, xcj, torque_j); i_forces.delta_torque[0] += torque_i[0]; i_forces.delta_torque[1] += torque_i[1]; i_forces.delta_torque[2] += torque_i[2]; j_forces.delta_torque[0] += torque_j[0]; j_forces.delta_torque[1] += torque_j[1]; j_forces.delta_torque[2] += torque_j[2]; } #endif } } void endSurfacesIntersect(SurfacesIntersectData &sidata, ForceData&, ForceData&) {} void beginPass(SurfacesIntersectData&, ForceData&, ForceData&){} void endPass(SurfacesIntersectData&, ForceData&, ForceData&){} void surfacesClose(SurfacesCloseData& scdata, ForceData&, ForceData&) { if(scdata.contact_flags) *scdata.contact_flags &= ~CONTACT_COHESION_MODEL; } private: double ** cohEnergyDens; bool tangentialReduce_; }; } } #endif // COHESION_MODEL_SJKR_H_ #endif