/* ---------------------------------------------------------------------- This is the ██╗ ██╗ ██████╗ ██████╗ ██████╗ ██╗ ██╗████████╗███████╗ ██║ ██║██╔════╝ ██╔════╝ ██╔════╝ ██║ ██║╚══██╔══╝██╔════╝ ██║ ██║██║ ███╗██║ ███╗██║ ███╗███████║ ██║ ███████╗ ██║ ██║██║ ██║██║ ██║██║ ██║██╔══██║ ██║ ╚════██║ ███████╗██║╚██████╔╝╚██████╔╝╚██████╔╝██║ ██║ ██║ ███████║ ╚══════╝╚═╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚═╝ ╚═╝ ╚═╝ ╚══════╝® DEM simulation engine, released by DCS Computing Gmbh, Linz, Austria http://www.dcs-computing.com, office@dcs-computing.com LIGGGHTS® is part of CFDEM®project: http://www.liggghts.com | http://www.cfdem.com Core developer and main author: Christoph Kloss, christoph.kloss@dcs-computing.com LIGGGHTS® is open-source, distributed under the terms of the GNU Public License, version 2 or later. It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. You should have received a copy of the GNU General Public License along with LIGGGHTS®. If not, see http://www.gnu.org/licenses . See also top-level README and LICENSE files. LIGGGHTS® and CFDEM® are registered trade marks of DCS Computing GmbH, the producer of the LIGGGHTS® software and the CFDEM®coupling software See http://www.cfdem.com/terms-trademark-policy for details. ------------------------------------------------------------------------- Contributing author and copyright for this file: This file is from LAMMPS, but has been modified. Copyright for modification: Copyright 2012- DCS Computing GmbH, Linz Copyright 2009-2012 JKU Linz Copyright of original file: LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. ------------------------------------------------------------------------- */ #include #include #include "compute_reduce_region.h" #include "atom.h" #include "update.h" #include "modify.h" #include "domain.h" #include "group.h" #include "region.h" #include "fix.h" #include "input.h" #include "variable.h" #include "memory.h" #include "error.h" using namespace LAMMPS_NS; enum{SUM,MINN,MAXX,AVE}; enum{X,V,F,COMPUTE,FIX,VARIABLE,RHO,P}; enum{PERATOM,LOCAL}; #define BIG 1.0e20 /* ---------------------------------------------------------------------- */ ComputeReduceRegion::ComputeReduceRegion(LAMMPS *lmp, int &iarg, int narg, char **arg) : ComputeReduce(lmp, iarg, narg, arg) {} /* ---------------------------------------------------------------------- calculate reduced value for one input M and return it if flag = -1: sum/min/max/ave all values in vector for per-atom quantities, limit to atoms in group and region if mode = MIN or MAX, also set index to which vector value wins if flag >= 0: simply return vector[flag] ------------------------------------------------------------------------- */ double ComputeReduceRegion::compute_one(int m, int flag) { int i; Region *region = domain->regions[iregion]; // invoke the appropriate attribute,compute,fix,variable // compute scalar quantity by summing over atom scalars // only include atoms in group index = -1; double **x = atom->x; int *mask = atom->mask; int nlocal = atom->nlocal; int n = value2index[m]; int j = argindex[m]; double one; if (mode == SUM) one = 0.0; else if (mode == MINN) one = BIG; else if (mode == MAXX) one = -BIG; else if (mode == AVE) one = 0.0; if (which[m] == X) { if (flag < 0) { for (i = 0; i < nlocal; i++) if (mask[i] & groupbit && region->match(x[i][0],x[i][1],x[i][2])) combine(one,x[i][j],i); } else one = x[flag][j]; } else if (which[m] == V) { double **v = atom->v; if (flag < 0) { for (i = 0; i < nlocal; i++) if (mask[i] & groupbit && region->match(x[i][0],x[i][1],x[i][2])) combine(one,v[i][j],i); } else one = v[flag][j]; } else if (which[m] == F) { double **f = atom->f; if (flag < 0) { for (i = 0; i < nlocal; i++) if (mask[i] & groupbit && region->match(x[i][0],x[i][1],x[i][2])) combine(one,f[i][j],i); } else one = f[flag][j]; // invoke compute if not previously invoked } else if (which[m] == COMPUTE) { Compute *compute = modify->compute[n]; if (flavor[m] == PERATOM) { if (!(compute->invoked_flag & INVOKED_PERATOM)) { compute->compute_peratom(); compute->invoked_flag |= INVOKED_PERATOM; } if (j == 0) { double *compute_vector = compute->vector_atom; int n = nlocal; if (flag < 0) { for (i = 0; i < n; i++) if (mask[i] & groupbit && region->match(x[i][0],x[i][1],x[i][2])) combine(one,compute_vector[i],i); } else one = compute_vector[flag]; } else { double **compute_array = compute->array_atom; int n = nlocal; int jm1 = j - 1; if (flag < 0) { for (i = 0; i < n; i++) if (mask[i] & groupbit && region->match(x[i][0],x[i][1],x[i][2])) combine(one,compute_array[i][jm1],i); } else one = compute_array[flag][jm1]; } } else if (flavor[m] == LOCAL) { if (!(compute->invoked_flag & INVOKED_LOCAL)) { compute->compute_local(); compute->invoked_flag |= INVOKED_LOCAL; } if (j == 0) { double *compute_vector = compute->vector_local; int n = compute->size_local_rows; if (flag < 0) for (i = 0; i < n; i++) combine(one,compute_vector[i],i); else one = compute_vector[flag]; } else { double **compute_array = compute->array_local; int n = compute->size_local_rows; int jm1 = j - 1; if (flag < 0) for (i = 0; i < n; i++) combine(one,compute_array[i][jm1],i); else one = compute_array[flag][jm1]; } } // check if fix frequency is a match } else if (which[m] == FIX) { if (update->ntimestep % modify->fix[n]->peratom_freq) error->all(FLERR,"Fix used in compute reduce not computed at compatible time"); Fix *fix = modify->fix[n]; if (flavor[m] == PERATOM) { if (j == 0) { double *fix_vector = fix->vector_atom; int n = nlocal; if (flag < 0) { for (i = 0; i < n; i++) if (mask[i] & groupbit && region->match(x[i][0],x[i][1],x[i][2])) combine(one,fix_vector[i],i); } else one = fix_vector[flag]; } else { double **fix_array = fix->array_atom; int jm1 = j - 1; if (flag < 0) { for (i = 0; i < nlocal; i++) if (mask[i] & groupbit && region->match(x[i][0],x[i][1],x[i][2])) combine(one,fix_array[i][jm1],i); } else one = fix_array[flag][jm1]; } } else if (flavor[m] == LOCAL) { if (j == 0) { double *fix_vector = fix->vector_local; int n = fix->size_local_rows; if (flag < 0) for (i = 0; i < n; i++) combine(one,fix_vector[i],i); else one = fix_vector[flag]; } else { double **fix_array = fix->array_local; int n = fix->size_local_rows; int jm1 = j - 1; if (flag < 0) for (i = 0; i < n; i++) combine(one,fix_array[i][jm1],i); else one = fix_array[flag][jm1]; } } // evaluate atom-style variable } else if (which[m] == VARIABLE) { if (nlocal > maxatom) { maxatom = atom->nmax; memory->destroy(varatom); memory->create(varatom,maxatom,"reduce/region:varatom"); } input->variable->compute_atom(n,igroup,varatom,1,0); if (flag < 0) { for (i = 0; i < nlocal; i++) if (mask[i] & groupbit && region->match(x[i][0],x[i][1],x[i][2])) combine(one,varatom[i],i); } else one = varatom[flag]; } return one; } /* ---------------------------------------------------------------------- */ bigint ComputeReduceRegion::count(int m) { int n = value2index[m]; if (which[m] == X || which[m] == V || which[m] == F) return group->count(igroup,iregion); else if (which[m] == COMPUTE) { Compute *compute = modify->compute[n]; if (flavor[m] == PERATOM) { return group->count(igroup,iregion); } else if (flavor[m] == LOCAL) { bigint ncount = compute->size_local_rows; bigint ncountall; MPI_Allreduce(&ncount,&ncountall,1,MPI_DOUBLE,MPI_SUM,world); return ncountall; } } else if (which[m] == FIX) { Fix *fix = modify->fix[n]; if (flavor[m] == PERATOM) { return group->count(igroup,iregion); } else if (flavor[m] == LOCAL) { bigint ncount = fix->size_local_rows; bigint ncountall; MPI_Allreduce(&ncount,&ncountall,1,MPI_DOUBLE,MPI_SUM,world); return ncountall; } } else if (which[m] == VARIABLE) return group->count(igroup,iregion); bigint dummy = 0; return dummy; }