/* ---------------------------------------------------------------------- This is the ██╗ ██╗ ██████╗ ██████╗ ██████╗ ██╗ ██╗████████╗███████╗ ██║ ██║██╔════╝ ██╔════╝ ██╔════╝ ██║ ██║╚══██╔══╝██╔════╝ ██║ ██║██║ ███╗██║ ███╗██║ ███╗███████║ ██║ ███████╗ ██║ ██║██║ ██║██║ ██║██║ ██║██╔══██║ ██║ ╚════██║ ███████╗██║╚██████╔╝╚██████╔╝╚██████╔╝██║ ██║ ██║ ███████║ ╚══════╝╚═╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚═╝ ╚═╝ ╚═╝ ╚══════╝® DEM simulation engine, released by DCS Computing Gmbh, Linz, Austria http://www.dcs-computing.com, office@dcs-computing.com LIGGGHTS® is part of CFDEM®project: http://www.liggghts.com | http://www.cfdem.com Core developer and main author: Christoph Kloss, christoph.kloss@dcs-computing.com LIGGGHTS® is open-source, distributed under the terms of the GNU Public License, version 2 or later. It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. You should have received a copy of the GNU General Public License along with LIGGGHTS®. If not, see http://www.gnu.org/licenses . See also top-level README and LICENSE files. LIGGGHTS® and CFDEM® are registered trade marks of DCS Computing GmbH, the producer of the LIGGGHTS® software and the CFDEM®coupling software See http://www.cfdem.com/terms-trademark-policy for details. ------------------------------------------------------------------------- Contributing author and copyright for this file: This file is from LAMMPS LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Wan Liang (Chinese Academy of Sciences) ------------------------------------------------------------------------- */ #include #include #include "compute_cna_atom.h" #include "atom.h" #include "update.h" #include "force.h" #include "pair.h" #include "modify.h" #include "neighbor.h" #include "neigh_list.h" #include "neigh_request.h" #include "comm.h" #include "memory.h" #include "error.h" #include using namespace LAMMPS_NS; #define MAXNEAR 16 #define MAXCOMMON 8 enum{UNKNOWN,FCC,HCP,BCC,ICOS,OTHER}; enum{NCOMMON,NBOND,MAXBOND,MINBOND}; /* ---------------------------------------------------------------------- */ ComputeCNAAtom::ComputeCNAAtom(LAMMPS *lmp, int &iarg, int narg, char **arg) : Compute(lmp, iarg, narg, arg) { if (narg != iarg+1) error->all(FLERR,"Illegal compute cna/atom command"); peratom_flag = 1; size_peratom_cols = 0; double cutoff = force->numeric(FLERR,arg[iarg++]); if (cutoff < 0.0) error->all(FLERR,"Illegal compute cna/atom command"); cutsq = cutoff*cutoff; nmax = 0; nearest = NULL; nnearest = NULL; pattern = NULL; } /* ---------------------------------------------------------------------- */ ComputeCNAAtom::~ComputeCNAAtom() { memory->destroy(nearest); memory->destroy(nnearest); memory->destroy(pattern); } /* ---------------------------------------------------------------------- */ void ComputeCNAAtom::init() { if (force->pair == NULL) error->all(FLERR,"Compute cna/atom requires a pair style be defined"); if (sqrt(cutsq) > force->pair->cutforce) error->all(FLERR,"Compute cna/atom cutoff is longer than pairwise cutoff"); // cannot use neighbor->cutneighmax b/c neighbor has not yet been init if (2.0*sqrt(cutsq) > force->pair->cutforce + neighbor->skin && comm->me == 0) error->warning(FLERR,"Compute cna/atom cutoff may be too large to find " "ghost atom neighbors"); int count = 0; for (int i = 0; i < modify->ncompute; i++) if (strcmp(modify->compute[i]->style,"cna/atom") == 0) count++; if (count > 1 && comm->me == 0) error->warning(FLERR,"More than one compute cna/atom defined"); // need an occasional full neighbor list int irequest = neighbor->request((void *) this); neighbor->requests[irequest]->pair = 0; neighbor->requests[irequest]->compute = 1; neighbor->requests[irequest]->half = 0; neighbor->requests[irequest]->full = 1; neighbor->requests[irequest]->occasional = 1; } /* ---------------------------------------------------------------------- */ void ComputeCNAAtom::init_list(int id, NeighList *ptr) { list = ptr; } /* ---------------------------------------------------------------------- */ void ComputeCNAAtom::compute_peratom() { int i,j,k,ii,jj,kk,m,n,inum,jnum,inear,jnear; int firstflag,ncommon,nbonds,maxbonds,minbonds; int nfcc,nhcp,nbcc4,nbcc6,nico,cj,ck,cl,cm; int *ilist,*jlist,*numneigh,**firstneigh; int cna[MAXNEAR][4],onenearest[MAXNEAR]; int common[MAXCOMMON],bonds[MAXCOMMON]; double xtmp,ytmp,ztmp,delx,dely,delz,rsq; invoked_peratom = update->ntimestep; // grow arrays if necessary if (atom->nlocal > nmax) { memory->destroy(nearest); memory->destroy(nnearest); memory->destroy(pattern); nmax = atom->nmax; memory->create(nearest,nmax,MAXNEAR,"cna:nearest"); memory->create(nnearest,nmax,"cna:nnearest"); memory->create(pattern,nmax,"cna:cna_pattern"); vector_atom = pattern; } // invoke full neighbor list (will copy or build if necessary) neighbor->build_one(list->index); inum = list->inum; ilist = list->ilist; numneigh = list->numneigh; firstneigh = list->firstneigh; // find the neigbours of each atom within cutoff using full neighbor list // nearest[] = atom indices of nearest neighbors, up to MAXNEAR // do this for all atoms, not just compute group // since CNA calculation requires neighbors of neighbors double **x = atom->x; int *mask = atom->mask; int nlocal = atom->nlocal; int nerror = 0; for (ii = 0; ii < inum; ii++) { i = ilist[ii]; xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; jlist = firstneigh[i]; jnum = numneigh[i]; n = 0; for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; j &= NEIGHMASK; delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; rsq = delx*delx + dely*dely + delz*delz; if (rsq < cutsq) { if (n < MAXNEAR) nearest[i][n++] = j; else { nerror++; break; } } } nnearest[i] = n; } // warning message int nerrorall; MPI_Allreduce(&nerror,&nerrorall,1,MPI_INT,MPI_SUM,world); if (nerrorall && comm->me == 0) { char str[512]; sprintf(str,"Too many neighbors in CNA for %d atoms",nerrorall); error->warning(FLERR,str,0); } // compute CNA for each atom in group // only performed if # of nearest neighbors = 12 or 14 (fcc,hcp) nerror = 0; for (ii = 0; ii < inum; ii++) { i = ilist[ii]; if (!(mask[i] & groupbit)) { pattern[i] = UNKNOWN; continue; } if (nnearest[i] != 12 && nnearest[i] != 14) { pattern[i] = OTHER; continue; } // loop over near neighbors of I to build cna data structure // cna[k][NCOMMON] = # of common neighbors of I with each of its neighs // cna[k][NBONDS] = # of bonds between those common neighbors // cna[k][MAXBOND] = max # of bonds of any common neighbor // cna[k][MINBOND] = min # of bonds of any common neighbor for (m = 0; m < nnearest[i]; m++) { j = nearest[i][m]; // common = list of neighbors common to atom I and atom J // if J is an owned atom, use its near neighbor list to find them // if J is a ghost atom, use full neighbor list of I to find them // in latter case, must exclude J from I's neighbor list if (j < nlocal) { firstflag = 1; ncommon = 0; for (inear = 0; inear < nnearest[i]; inear++) for (jnear = 0; jnear < nnearest[j]; jnear++) if (nearest[i][inear] == nearest[j][jnear]) { if (ncommon < MAXCOMMON) common[ncommon++] = nearest[i][inear]; else if (firstflag) { nerror++; firstflag = 0; } } } else { xtmp = x[j][0]; ytmp = x[j][1]; ztmp = x[j][2]; jlist = firstneigh[i]; jnum = numneigh[i]; n = 0; for (kk = 0; kk < jnum; kk++) { k = jlist[kk]; k &= NEIGHMASK; if (k == j) continue; delx = xtmp - x[k][0]; dely = ytmp - x[k][1]; delz = ztmp - x[k][2]; rsq = delx*delx + dely*dely + delz*delz; if (rsq < cutsq) { if (n < MAXNEAR) onenearest[n++] = k; else break; } } firstflag = 1; ncommon = 0; for (inear = 0; inear < nnearest[i]; inear++) for (jnear = 0; jnear < n; jnear++) if (nearest[i][inear] == onenearest[jnear]) { if (ncommon < MAXCOMMON) common[ncommon++] = nearest[i][inear]; else if (firstflag) { nerror++; firstflag = 0; } } } cna[m][NCOMMON] = ncommon; // calculate total # of bonds between common neighbor atoms // also max and min # of common atoms any common atom is bonded to // bond = pair of atoms within cutoff for (n = 0; n < ncommon; n++) bonds[n] = 0; nbonds = 0; for (jj = 0; jj < ncommon; jj++) { j = common[jj]; xtmp = x[j][0]; ytmp = x[j][1]; ztmp = x[j][2]; for (kk = jj+1; kk < ncommon; kk++) { k = common[kk]; delx = xtmp - x[k][0]; dely = ytmp - x[k][1]; delz = ztmp - x[k][2]; rsq = delx*delx + dely*dely + delz*delz; if (rsq < cutsq) { nbonds++; bonds[jj]++; bonds[kk]++; } } } cna[m][NBOND] = nbonds; maxbonds = 0; minbonds = MAXCOMMON; for (n = 0; n < ncommon; n++) { maxbonds = MAX(bonds[n],maxbonds); minbonds = MIN(bonds[n],minbonds); } cna[m][MAXBOND] = maxbonds; cna[m][MINBOND] = minbonds; } // detect CNA pattern of the atom nfcc = nhcp = nbcc4 = nbcc6 = nico = 0; pattern[i] = OTHER; if (nnearest[i] == 12) { for (inear = 0; inear < 12; inear++) { cj = cna[inear][NCOMMON]; ck = cna[inear][NBOND]; cl = cna[inear][MAXBOND]; cm = cna[inear][MINBOND]; if (cj == 4 && ck == 2 && cl == 1 && cm == 1) nfcc++; else if (cj == 4 && ck == 2 && cl == 2 && cm == 0) nhcp++; else if (cj == 5 && ck == 5 && cl == 2 && cm == 2) nico++; } if (nfcc == 12) pattern[i] = FCC; else if (nfcc == 6 && nhcp == 6) pattern[i] = HCP; else if (nico == 12) pattern[i] = ICOS; } else if (nnearest[i] == 14) { for (inear = 0; inear < 14; inear++) { cj = cna[inear][NCOMMON]; ck = cna[inear][NBOND]; cl = cna[inear][MAXBOND]; cm = cna[inear][MINBOND]; if (cj == 4 && ck == 4 && cl == 2 && cm == 2) nbcc4++; else if (cj == 6 && ck == 6 && cl == 2 && cm == 2) nbcc6++; } if (nbcc4 == 6 && nbcc6 == 8) pattern[i] = BCC; } } // warning message MPI_Allreduce(&nerror,&nerrorall,1,MPI_INT,MPI_SUM,world); if (nerrorall && comm->me == 0) { char str[512]; sprintf(str,"Too many common neighbors in CNA %d times",nerrorall); error->warning(FLERR,str); } } /* ---------------------------------------------------------------------- memory usage of local atom-based array ------------------------------------------------------------------------- */ double ComputeCNAAtom::memory_usage() { double bytes = nmax * sizeof(int); bytes += nmax * MAXNEAR * sizeof(int); bytes += nmax * sizeof(double); return bytes; }